Ergodic Theory and Measured Group Theory
Lecture 7

Full poof of the ptwies se. the. $-\int f d d^{\mu}=0$

- limp $A_{n} F$ constant are.

- Denote $c:=\int_{x} f^{*} d \mu=f^{*}$.
- Define $x \mapsto n(x): X \rightarrow \mathbb{N}$, where $n(x)=$ the least $n \in \mathbb{N}$ sit. $A_{n} f(x) \geqslant f^{*}$.
- \quad lacy enough $M>0$ s.t. $X \mid Y=f^{-1}(-\infty,-M) \leq X$ has small enough measure so ht $\int_{X \mid Y}\left|f-N^{+}\right| d r<\frac{c}{3}$, in particular, $\int_{X \in Y} \left\lvert\,-f^{+}>-\frac{c}{3}\right.$.
Now weill deal with $\mathbb{1}_{Y} f$ instead of f.
- Amply the tiling lemma to $x \mapsto n(x)$ wilt $\varepsilon=\frac{c}{\left.2 \cdot\left(M_{+}+1\right) 3\right)}$ d get the \exists set z of measure $\geqslant 1-\varepsilon V^{\text {add }}$, $t . \quad \forall x \in Z$, the interval $I_{N} x$ is tiled, up to an $\leq \varepsilon$-traction, with tiles, of the form $I_{n(y)} \cdot y$. Note that $A_{n(y)} f \geq f^{*}$, hance $A_{n(s)}\left(f-f^{*}\right) \geqslant 0$, bat also $\mathbb{1}_{Y}\left(f-f_{*}\right) \geqslant f-f_{*}$, so $A_{n(y)}\left(\mathbb{1}_{Y}\left(f-f^{*}\right)\right) \geqslant 0$. Therefore, $\forall x \in Z$, $A_{N}\left(\mathbb{1}_{Y}\left(f-F^{+}\right)\right) \geqslant(1-\varepsilon) \cdot 0+\varepsilon \cdot(-M-1)=-(M+1) \cdot \varepsilon$.

$$
\begin{aligned}
&-\int_{Y}\left(f-f^{*}\right) d r=\int_{X} \mathbb{1}_{Y}\left(f-f^{*}\right) d \xi=\int_{\text {beidge }} A_{N}\left(\mathbb{1}_{Y}\left(f-P^{+}\right)\right) d r=\int_{Z} A_{N}\left(\mathbb { 1 } _ { Y } \left(\left(-f^{*}\right) d r\right.\right. \\
&+\int_{X \backslash z} A_{N}\left(\mathbb{1}_{Y}\left(f-f^{*}\right)\right) d \mu \geqslant-(\mu+1) \varepsilon \cdot \mu(z)-(M+1) \cdot \mu(x(z) \\
& \geqslant-(M+1) \varepsilon-(M+1) \cdot \varepsilon=-2(M+1) \cdot \varepsilon .
\end{aligned}
$$

- Henc, $-c=\int_{X} f \mu \mu-c=\int_{X}\left(f-f^{*}\right) d \mu=\int_{Y}\left(f-f^{*}\right) d \mu+\int_{x \backslash y}\left(f-f^{*}\right) d \mu$

$$
\geqslant-2 \cdot(m+1) \cdot 2-\frac{c}{3} \geqslant-\frac{2 c}{3}, \text { a watractiction. }
$$

Ptwise ergolic for wonergodic. Intritively, toe an ergodic pmap T, the poistrise ergotic theorem sass is that T stirs up the chale X so well Iht it speceads acy L'-fuction f evenly on X maning it the coustant $\int f d g$.

For a nonergolic T, we know SHt \exists partition $X=X_{1} L 1 X_{2}$, a.t. T wever woves ang poict of X_{1} indo X_{2}, and vice versa, $a \mu\left(x_{1}\right), \mu\left(x_{2}\right)>0$. The best one can hape is HeA
T^{∞} ipreads $\mathbb{1}_{x_{i}} \cdot$ t over X_{i} evenly. If X is partitioned "enough" into invarinat pieces, thun is true and the pieverise evened ont version of f is called the conclitional expectation of f with respect to the σ-ilgebren of Bowel T-invariant sets,

Def. It A be a sub-5-algetren of the Bel r-algebra $B(x)$ and let $f \in L^{\prime}\left(x,{ }^{\mu}\right)$. An integrable function \bar{F} mesimeable wat. \& is called the conditional expectation of f w.c.t. A if $\forall A \in A, \quad \int_{A} f d r=\int_{A} \bar{f} d \mu$.
Otfical notation is $\mathbb{E}(f \mid t)$.
Example. Let $X=x_{1} 4 x_{2} \cup x_{3}$ al let A be the σ-all generated bs

$\left\{x_{1}, x_{2}, x_{3}\right\}$. The A-mensurable functions ace exactly those constant on each X_{i}.
Then $\left.\bar{f}\right|_{x_{i}} \equiv \int_{x_{i}} f d r$, fir $i=1,2,3$,
Def. Fo, A as is the def above, detinue eq. ne! E* on $X b_{y}$,

$$
x E_{A y}: \Leftrightarrow \forall A \in A,(x \in A \Leftrightarrow y \in A) .
$$

Using the analytic separation theorem from descriptive et theory, one can show that if $A \leq B(X)$ is cthly-genecated, then the A-measurable functions are precisely Hose Boned functions hat are E_{∞}-invariant lice. constant in every E_{A}-dan).

Tho orem, $\forall f \in \mathcal{L}^{\prime}(x, f), \mathbb{E}(t \mid b)$ exits.
Poof. Soocise $f \geqslant 0$. Let j_{t} be the weasine given by $d s=S d t$, ie. $\forall B \subseteq X, \quad f_{f}(B)=\int_{B} f l^{\mu}$. at j_{f}^{\prime} al μ^{\prime} be the astrictions of $\mu_{+} \perp \mu B$ to the σ-debra A. Bat still, $\mu_{f}^{\prime} \ll \mu \mid$, so \exists Radon-Nikodym derivative $\bar{f}:=\frac{d y_{f}^{\prime}}{\mid \mu^{\prime}}$, wish h_{y} def. is an A. mensurable fac ion, Check ht $\sqrt{\sqrt{x}}$ \dot{f} is $\mathbb{E}(f \mid A)$.
i.. The projection

Remark. For $f \in \mathcal{J}^{2}(x, \mu), \mathbb{E}(f \mid A)$ is the closed (is the Hilbert space $l^{2}(x, \mu)$) bo f among all A-vensurable factions.

Ptwise ecroatic for general) T. Let T be a pap transformation on (x, μ). $\forall f \in L^{\prime}(x, f)$,

$$
\operatorname{lin} A_{n}^{T} f=\mathbb{E}\left(f \mid B_{T}\right) \text { ace. }
$$

were B_{T}^{n} is the σ-algebra if all T-invariant Bone sets.

Proof. is the same as tor ergodic T, jist keep in mind hat f^{*} is ouly a T-inv function (aot necessarib wastact).

Le-ergalic Rearem. It (x, μ) be a st. prob. space.
Popectives of $\mathbb{E}(f(A)$. For anf sat- σ-all. $A \subseteq B(X)$, the condi tional expection is an ruccutor from $L^{P}(x, y)$ do $L^{P}(x, y)$, which is a coutaction, i.e.

$$
\|\mathbb{E}(f \mid x)\|_{p} \leq\|f\|_{p}, \quad \forall f \in L^{p}(x, y)
$$

fo all $p \geqslant 1$.
Proot. This fillows from Jensen's ine paling (i.e. convexity of ($)^{p}$),
 i.e. The $p^{\text {th }}$ poner of an averge \leq the avecage of $p^{\text {th }}$ povers.

This is similar bo the averuging rpecator $A_{n}^{\top} \ldots$
Bridge lemman. Let $u \in \mathbb{N}, T$ a papp trans, on $(x, \mu), f \in l^{\prime}(x, \mu)$.
(a) $\int_{B} f d \mu=\int_{B} A_{n} f d \mu$ for even T-invariant set B.
(b) $\left\|A_{n} f\right\|_{p} \leq\|F\|_{p}$ Loe all $p \geqslant 1$, given $f \in L^{p}(x, r)$.

Proot. (a) B_{j} he anal bridye lemma for $\mathbb{1}_{B}$,

$$
\int_{B} f d r=\int_{X} \mathbb{1}_{B} f d f=\int_{X} A_{r} \mathbb{1}_{B} f d r=\int_{B} A_{n} f d r .
$$

(b)

$$
\begin{aligned}
& \left\|A_{u} f\right\|_{p}^{p}=\int\left|A_{n} f\right|^{p} d y \leq \int_{\Delta-\text { ineq. }}\left(A_{n}|f|\right)^{p} d \mu \leq \\
& \leq \int A_{n}\left(|f|^{p}\right) d \mu=\int_{\text {caveritibat }}=\int_{\text {bidge }}^{p} d \mu=\|f\|_{p}^{p} .
\end{aligned}
$$

