Ergodic Theory and Measured Group Theory Lecture 7

Apply the tiling lemma to X H> n(x) with 2 = C and N = 2:(M+1)-3 / I get Wt I set 2 of measure 21-2V, t. VxGZ, the interval Inx is tiled, up to an 22-traction, with tiles of the form In() y. Note that Any F > ft hence Ancy (f-f*) = 0, but also 14 (f-fx) = f-fx, so Any (1y (f.f.)) 20. Therefore, 4xEZ, $A_{1}\left(1_{Y}(F-F^{*})\right)^{M_{Y}}\left(1-\zeta\right)\cdot O+\zeta\cdot\left(-M-1\right)=-\left(M+1\right)\cdot\xi.$

$$\int_{Y} (f-f^{*}) dr = \int \mathbf{1}_{Y} (f-f^{*}) df = \int A_{N} (\mathbf{1}_{Y} (f-p^{*})) dr = \int A_{N} (\mathbf{1}_{Y} (F-p^{*})) dr$$

$$= \int A_{N} (\mathbf{1}_{Y} (F-p^{*})) dr = \int A_{N} (\mathbf{1}_{Y} (F-p^{*})) dr$$

$$= \int A_{N} (\mathbf{1}_{Y} (F-p^{*})) dr = \int A_{N} (\mathbf{1}_{Y} (F-p^{*})) dr$$

$$= \int A_{N} (\mathbf{1}_{Y} (F-p^{*})) dr$$

$$= \int (A+1) (f-p^{*}) dr$$

$$= - (A+1) (f-p^{*}) (A+1) (f-p^{$$

- Hence,
$$-C = \int f dJ - C = \int (f - f^*) dJ = \int (f - f^*) dJ + \int (f - f^*) dJ$$

 $X \qquad Y \qquad X \setminus Y$
 $7 - 2 \cdot (M + 1) \cdot 2 - \frac{2}{3} = 7 - \frac{2C}{31} = a \quad \text{son frachichiph}, \square$

To preads 1x; + over X; evenly. If X is partitioned "mongh" into invariant pieces, then is true and the piecewise evened out version of f is called the conditional expectation of f with respect to the o-algebra of Borel T-invariant subs,

Ad. lit A be a sub-o-algebra of the Bonel o-algebra B(x) and let FELLK, M). An integrable function F measurable w.r.t. & is called the conditional expediation of F mic.t. A if VAEA, JFJJ = JFJM. A A Offical notation is IE (FJA). Example. let X = X, UX2 IX2 it let A be the J-aly generated by X1 (X1, X2, X2). The A-measurable X2 functions are exactly those constant X2 on each Xi. Thun $FI_{x_i} \equiv \int f df$, fire i = 1, 2, 3, <u>Not</u>. For A as in the def above, define eq. nel. Ex ou X by, × Exy: <=> VAEA, (xEA => yEA).

Using the analytic reparation theorem from descriptive set theory, one can show that if the B(X) is ettedy-generated, then the A-massinceble tunificars are precisely those Bund functions that one Ex-invariant lie oustant on enry Ex- dam).

Theren,
$$\forall F \in 1^{(1)}(X, M)$$
, $E(F \mid h)$ exists.
Read. Suppose $f \ge 0$. Let J_{2} be the measure given by $dJ_{7} = \overline{J}dJ_{7}$
i.e. $\forall B \le X$, $J_{7}(B) = \int \overline{J}dJ_{7}$. Let $J_{7}' dJ_{7}' dc$ the
sustrictions of $J_{7}' dJ_{7}' B$ to the $\overline{0}$ -dgebra A . Bet still,
 $J_{7}' \le J^{(1)}$, so \exists Radou-Ni hodym divinative $\overline{f} := dJ_{7}'$, thich
by dif. is an A_{2} measurable function. Uncle bet $\overline{T}J^{(1)}$
 $F' is E(F \mid A)$.
Remark. For $f \in (1^{(2)}(X, M))$, $E(F \mid A)$ is the down of lie the Hilbert
space $L^{(2)}(X, M)$ to \overline{f} among all A -measurable function.
Phose ergodic for green \overline{T} , let \overline{T} be a pup transformation on (K, M) .
 $V \in L^{(1)}(X, M)$

 $\lim_{n \to \infty} A'_n f = \mathrm{It}(f \mid \mathcal{B}_T)$ where BT is the O-algebra of all I-invariant Bonel Sels.

Proof. (a) By h much bridge lemma for
$$A_B$$
,

$$\int f df = \int A_B f df = \int A_U A_B F df = \int A_U f df,$$

$$B \times X \qquad B$$
(b) If $A_U f [I_P^P = \int |A_U f|^P df \leq \int (A_U |f|)^P df \leq a \text{-ineq}, \qquad (auverify af ()^P)$

$$\leq \int A_U(|f|^P) df = \int |F|^P df = |f||_P^P.$$

$$\sum_{bridge}$$